skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tavares, Zenna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a new algorithm that synthesizes functional reactive programs from observation data. The key novelty is to iterate between a functional synthesis step, which attempts to generate a transition function over observed states, and an automata synthesis step, which adds any additional latent state necessary to fully account for the observations. We develop a functional reactive DSL called Autumn that can express a rich variety of causal dynamics in time-varying, Atari-style grid worlds, and apply our method to synthesize Autumn programs from data. We evaluate our algorithm on a benchmark suite of 30 Autumn programs as well as a third-party corpus of grid-world-style video games. We find that our algorithm synthesizes 27 out of 30 programs in our benchmark suite and 21 out of 27 programs from the third-party corpus, including several programs describing complex latent state transformations, and from input traces containing hundreds of observations. We expect that our approach will provide a template for how to integrate functional and automata synthesis in other induction domains. 
    more » « less